
OPENMP 4.5 DEVICE
OFFLOADING DETAILS

erhtjhtyhy

Main references:
• Using OpenMP – The Next Step by van der Pas, Stotzer and

Terboven, MIT Press, 2017
• 4.5/5.0 OpenMP Specification and Examples

COLLEEN BERTONI

1. What is the basic device execution model, and the constructs used
– Host-centric, hierarchical parallelism with thread teams
– Difference between teams and parallel

2. How to distribute work to threads using worksharing, and the constructs used
– Distribute, for/do, combined constructs

3. How to map data between host and device, constructs used, and data scopes
for the main constructs
– How to decrease unnecessary data transfer

4. How to check if what you think is happening is actually happening
– OpenMP runtime routines
– Nvprof (on Nvidia GPUs)

2

OVERVIEW

§ Introduction and some terminology
– Execution model and data environment

§ Important OpenMP 4.5 Constructs/Concepts
1. Device execution control
2. Workshare
3. Data mapping
4. Runtime routines (and nvprof)

§ Demo on JLSE at ALCF

3

INTRO AND QUICK EXAMPLE

4

void vec_mult(float*p, float*v1, float*v2, int N)
{
int i;
init(v1, v2, N);
#pragma omp target teams distribute parallel for simd \

map(to: v1[0:N], v2[0:N]) map(from: p[0:N])
for (i=0; i<N; i++)
{

p[i] = v1[i]*v2[i];
}
output(p, N);

}

Creates teams
of threads in the
target device

Distributes iterations
to the threads, where
each thread uses
SIMD parallelism

Controlling data
transfer

Directive-based approach, different from OpenCL/CUDA

§ Host-centric execution model
§ Device: implementation-defined execution unit
§ When the host thread reaches a target region,

it generates a target task, and the host thread
suspends the generating task it was executing

§ Initial task is generated on the device
§ Initial thread carries out the task on the

accelerator
§ When it’s done, the host thread resumes

5

host thread

Device
initial
thread

Accelerator
worker
threads

OVERVIEW OF EXECUTION

host device(s)

host thread

Device
initial
thread

DATA ENVIRONMENT
§ Accelerator contains a device data

environment, which contains the set of all
variables that are available to the threads on
the accelerator

§ When an original variable in the host’s data
environment is mapped to an accelerator, a
corresponding variable is allocated in the
accelerator’s device data environment. Over
the execution of the program, variables
changes through mapping and unmapping

§ Original and corresponding variables may or
may not share the same storage location

6

A[N]

Host data
environment

device data
environment

map(to:)

A[N]
map(from:)

A[N]

OVERVIEW

§ Introduction and some terminology
– Execution model and data environment

§ Important OpenMP 4.5 Constructs/Concepts
1. Device execution control
2. Workshare
3. Data mapping
4. Runtime routines (and nvprof)

§ Demo on JLSE at ALCF

7

1. DEVICE EXECUTION CONTROL

DEVICE EXECUTION CONTROL

§ During execution, we want to offload code to the accelerator, spawn threads to
run code blocks in parallel, and take advantage of the available hardware

9

§ Hierarchical parallelism
§ Fine-grained parallelism between threads

in a single threadblock on a streaming
multiprocessor (SM), share local memory
and ability to sync

§ Coarse-grained parallelism different
threadblocks running on the same SM or
different SMs, share global memory

Image from Ref. 5 (“Targeting GPUs with
OpenMP4.5 Device Directives”, Beyer and Larkin)

DEVICE EXECUTION CONTROL: IMPORTANT
CONSTRUCTS

§ During execution, we want to offload code to the accelerator, spawn threads to
run code blocks in parallel, and take advantage of the available hardware

§ Target construct

§ Target teams construct

10

#pragma omp target [clause [[,]] clause ...]
structured block

#pragma omp teams [clause [[,]] clause ...]
structured block

TARGET CONSTRUCT
§ Marks code for offload onto a device
§ When a host thread reaches a target

construct, the host thread execution
pauses (by default) and a single initial
thread executes the target region on the
default device

§ Clauses to control behavior, like nowait and
device

11

host thread

#pragma omp target

#pragma omp target
{

C = A + B;
}

TARGET TEAMS CONSTRUCT

12

§ target teams starts a league of initial
threads where each thread is its own team,
and in its own contention group. Each
initial thread executes the teams region in
parallel.

§ Threads in different contention groups
cannot synchronize with each other

§ Different from the parallel construct,
which creates a single team of threads,
where each thread in the team executes
the parallel region. Threads can
synchronize with each other.

§ Clauses to control behavior, like
num_teams, thread_limit

host thread

#pragma omp target teams

QUICK REVIEW: #PRAGMA OMP PARALLEL

13

§ parallel construct, which creates a single team of threads, where each
thread in the team executes the parallel region. Threads can synchronize with
each other.

host thread

#pragma omp parallel

TARGET TEAMS CONSTRUCT

14

§ target teams starts a league of initial
threads where each thread is its own team,
and in its own contention group. Each
initial thread executes the teams region in
parallel.

§ Threads in different contention groups
cannot synchronize with each other

§ Different from the parallel construct,
which creates a single team of threads,
where each thread in the team executes
the parallel region. Threads can
synchronize with each other.

§ Clauses to control behavior, like
num_teams, thread_limit

host thread

#pragma omp target teams

§ The target teams construct creates a league of
initial threads, where each thread is its own team

§ Each team has only one thread

TARGET TEAMS CONSTRUCT

15

#pragma omp target teams num_teams(3)
{

int team = omp_get_team_num();
int nteams = omp_get_num_teams();

printf(”Hello from team %d out of %d teams.\n", team, nteams);

}

host thread

#pragma omp target teams

#pragma omp target teams num_teams(3)
#pragma omp parallel
{

int team = omp_get_team_num();
int nteams = omp_get_num_teams();
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();

printf("Team %d out of %d teams\nThread %d of out %d threads in the team.\n",
team, nteams, tid, nthreads);

}

When a parallel construct is reached by a
league, each initial thread becomes the master
of a new team of threads, and each team
concurrently executes the parallel region

TARGET TEAMS CONSTRUCT

16

host thread

#pragma omp target teams
#pragma omp parallel

SUMMARY: DIFFERENCE BETWEEN TEAMS AND
PARALLEL
§ #pragma omp teams

– Coarser-grained parallelism
– Spawns multiple teams, each with one thread
– (Typically) map to SMs in Nvidia HW
– Threads in different teams can’t synchronize with each other

§ #pragma omp parallel
– Finer-grained parallelism
– Spawns many threads in a team
– (Typically) map to CUDA cores in Nvidia HW
– Threads in a team can synchronize with each other (#pragma omp barrier)

17

2. WORKSHARING

WORKSHARING: IMPORTANT CONSTRUCTS

§ Purpose is spread the iterations of a loop across available hardware resources
§ Distribute construct

§ Combined constructs

19

#pragma omp distribute [clause [[,]] clause ...]
for-loop

#pragma omp distribute parallel for[clause [[,]] clause ...]
for-loop

host thread

League of initial
threads each in its
own team

DISTRIBUTE CONSTRUCT

§ Spreads the iterations of a loop coarsely
across hardware compute units
– Workshares by distributing iterations of a

loop to the initial threads in a league.
– Compare to for/do constructs, which

assign work associated with loop
iterations to threads inside a team

20

#pragma omp target teams num_teams(2)
#pragma omp distribute
for(int i=0; i<N; i++)
{
y[i] = x[i];

}

21

#pragma omp target teams num_teams(2)
#pragma omp distribute
for(int j=0; j<N; j+=N/2)
{
#pragma omp parallel
#pragma omp for
for(int i=j; i< j+N/2; i++)
y[i] = x[i];

}

DISTRIBUTE CONSTRUCT Creates a league of 2
teams, although only
one thread per team is
active

Distributes loop iterations
across the master threads
of each team

Activates the threads in the
teams, and distributes the
loop iterations to the threads

22

#pragma omp target teams num_teams(2)
#pragma omp distribute
for(int j=0; j<N; j+=N/2)
{
#pragma omp parallel
#pragma omp for
for(int i=j; i< j+N/2; i++)
y[i] = x[i];

}

DISTRIBUTE CONSTRUCT Creates a league of 2
teams, although only
one thread per team is
active

Distributes loop iterations
across the master threads
of each team

Activates the threads in the
teams, and distributes the
loop iterations to the threads

COMBINED CONSTRUCTS
§ Purpose is to distribute loop iterations across multiple levels of parallelism

without needing multiple loop nests

#pragma omp target teams distribute parallel for[clause[[,]clause]] new-line
for-loops

#pragma omp target teams distribute simd[clause[[,] clause]] new-line
for-loops

#pragma omp target teams distribute parallel for simd[clause[[,]…]] new-line
for-loops

Etc.

23

§ Worksharing across two levels of
parallelism using combined constructs

24

COMBINED CONSTRUCT
host thread

League of initial
threads each in its
own team

#pragma omp target teams distribute parallel for map(from:y[:N]) map(to:x[:N])
for(int i=0; i<N; i++)

{
y[i] = x[i];

}

Creates one thread on
target device

Creates teams, although
only the master thread is
active

Distributes loop iterations
across the initial thread of
each team

Activates the threads in
the teams, and distributes
the loop iterations within
the threads

SUMMARY: DIFFERENCE BETWEEN TEAMS AND
PARALLEL
§ #pragma omp teams

– Coarser-grained parallelism
– Spawns multiple teams, each with one thread
– (Typically) map to SMs in Nvidia HW
– Threads in different teams can’t synchronize with each other
– Distributes loop iterations with distribute

§ #pragma omp parallel
– Finer-grained parallelism
– Spawns many threads in a team
– (Typically) map to CUDA cores in Nvidia HW
– Threads in a team can synchronize with each other (#pragma omp barrier)
– Distributes loop iterations with for/do

25

3. DATA MAPPING

DATA MAPPING CLAUSES
§ Provides a mechanism for sharing

variables between host and device
– Memory may or may not be shared

between host and device, but the
implementation handles copying or
not copying

§ A mapped variable is the corresponding
variable in a device data environment to
the original variable in the host device
environment
– Can be thought of as a shared

variable, distinct from (first)private
variables

27

host thread

Device
initial
thread

A[N]

Host data
environment

device data
environment

map(to:)

A[N]
map(from:)

A[N]

DATA MAPPING: IMPORTANT CONSTRUCTS
§ Map clause on a target construct

– Map variables for a single target region
– Enclosed region executes on device and maps data

§ Target data
– Map variables across multiple target regions in a

structured block
– Enclosed region does not execute on device, only

maps data
§ Declare target

– Allows global variables to be mapped to an
accelerator’s device data environment for the whole
execution of the program (“globally mapped”).

§ Target enter/exit
– Map variables in stand-alone clauses

28

map([[map-type-modifier[,]]
map-type:] list)

#pragma omp target data clause
structured block

#pragma omp declare target
declarations-defs-seq

#pragma omp end declare target

#pragma omp target enter data
clause [[[,] clause ...]

DATA MAPPING: IMPORTANT CONSTRUCTS
§ Map clause on a target construct

– Map variables for a single target region
– Enclosed region executes on device and maps data
– Available map-types are:

• map(to: X) : map to device before execution
• map(from: X) : map from device after execution
• map(tofrom: X) : map to/from device
• map(alloc: X) : allocate on device

– Defaults:
• Arrays and structs are tofrom
• Scalars are firstprivate
• Be careful about pointers, since the memory

address the pointer points to may not exist on the
device

29

map([[map-type-modifier[,]]
map-type:] list)

Example:
#pragma omp target map(alloc:y)

if you don’t map
explicitly, the
compiler will do it
for you

MAP CLAUSE: IMPLICIT MAPPING

30

The default map-type for arrays is
tofrom:

On entry to the target region,
storage is allocated for arrays y and
x on the device. Then the values of
x and y are copied to the
accelerator. (map-entry)

On exit from the target region, the
accelerator’s values of x and y are
copied back to the host, and storage
for y and x on the accelerator is
released. (map-exit)

int x[N];
int y[N];

#pragma omp target

{
int i;
for(i=0;i<N;i++)
y[i] = i+N;

for(i=0;i<N;i++)
x[i] = y[i];

}

4 data transfers

MAP CLAUSE: EXPLICIT MAPPING

31

int x[N];
int y[N];

#pragma omp target map(alloc:y) \
map(from:x)

{
int i;
for(i=0;i<N;i++)
y[i] = i+N;

for(i=0;i<N;i++)
x[i] = y[i];

}

The default map-type for arrays is
tofrom:

On entry to the target region,
storage is allocated for arrays y and
x on the device. The the values of x
and y are left uninitialized (no
copying).

On exit from the target region, the
accelerator’s value of x is copied
back to the host, and storage for y
and x on the accelerator is released

1 data transfer

DATA MAPPING: IMPORTANT CONSTRUCTS
§ Target data

– Map variables across multiple target regions in a
structured block

– Enclosed region does not execute on device, only
maps data

32

#pragma omp target data clause
structured block

Ex:
#pragma omp target data map(from: p[0:N])
{
#pragma omp target map(to: v1[:N], v2[:N])
{ }
// host code
#pragma omp target map(to: v1[:N], v2[:N])
{ }

}

int i;
init(v1, v2, N);

#pragma omp target map(to: v1[:N], v2[:N]) map(from: p[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = v1[i] * v2[i];

init_again(v1, v2, N);

#pragma omp target map(to: v1[:N], v2[:N]) map(tofrom: p[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = p[i] + (v1[i] * v2[i]);

output(p, N);

TARGET DATA CONSTRUCT: MAP VARIABLES
ACROSS MULTIPLE TARGET REGIONS

33

1. On entry to first target region,
v1, v2, p are allocated on the
device. v1 and v2 are copied
to the device.

2. On exit from the first target
region, p is copied to host,
and v1, v2, and p are
removed from the device.

3. On entry to the second target
region, v1, v2, p are
allocated and copied.

4. Exit is the same as in the first
target region

5. p is copied back and forth
between the target regions,
even though we don’t modify
the array between target
regions

TARGET DATA CONSTRUCT: MAP VARIABLES
ACROSS MULTIPLE TARGET REGIONS

34

int i;
init(v1, v2, N);

#pragma omp target data map(from: p[0:N])
{

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = v1[i] * v2[i];

init_again(v1, v2, N);

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = p[i] + (v1[i] * v2[i]);

}
output(p, N);

Array p is only mapped once,
avoiding having to copy p back
and forth

TARGET DATA CONSTRUCT: MAP VARIABLES
ACROSS MULTIPLE TARGET REGIONS

35

int i;
init(v1, v2, N);

#pragma omp target data map(from: p[0:N])
{

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = v1[i] * v2[i];

init_again(v1, v2, N);

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = p[i] + (v1[i] * v2[i]);

}
output(p, N);

1. p is new. alloc’d on the
device and left uninitialized.
Ref. count set to 1.

2. v1,v2 are new. alloc’d on the
device, ref. counts set to 1,
host values copied to it. p is
already present, ref count
set to 2.

3. v1,v2 ref counts decrement
to 0, and are released. p ref
count decremented to 1, not
released.

4. Same as 2.
5. Same as 3.
6. Ref. count for p is 1, copied

back to host, ref count
decrements to 0, released.

1

2

3

6
5

4

int i;
init(v1, v2, N);

#pragma omp target data map(from: p[0:N])
{

#pragma omp target map(to: v1[:N], v2[:N]) map(from: p[0:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = v1[i] * v2[i];

init_again(v1, v2, N);

#pragma omp target map(to: v1[:N], v2[:N]) map(tofrom: p[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = p[i] + (v1[i] * v2[i]);

}
output(p, N);

TARGET DATA CONSTRUCT: MAP VARIABLES
ACROSS MULTIPLE TARGET REGIONS

36

• There is only one instance of
a variable in an accelerator’s
address space

• Map clause ignored if already
mapped in an outer region

int i;
init(v1, v2, N);

#pragma omp target data map(from: p[0:N])
{

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = v1[i] * v2[i];

init_again(v1, v2, p, N);

#pragma omp target map(to: v1[:N], v2[:N]) \
map(always, to: p[:N])

#pragma omp parallel for
for (i=0; i<N; i++)
p[i] = p[i] + (v1[i] * v2[i]);

}
output(p, N);

TARGET DATA CONSTRUCT: MAP VARIABLES
ACROSS MULTIPLE TARGET REGIONS

37

• There is only one instance of
a variable in an accelerator’s
address space

• Map clause ignored if already
mapped in an outer region

• Can use “always” clause to
force it

int i;
init(v1, v2, N);

#pragma omp target data map(from: p[0:N])
{

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = v1[i] * v2[i];

init_again(v1, v2, p, N);

#pragma omp target update to(p[:N])

#pragma omp target map(to:v1[:N], v2[:N])
#pragma omp parallel for

for (i=0; i<N; i++)
p[i] = p[i] + (v1[i] * v2[i]);

}
output(p, N);

TARGET UPDATE CONSTRUCT: KEEPING HOST
AND DEVICE CONSISTENT

38

• There is only one instance of
a variable in an accelerator’s
address space

• Map clause ignored if already
mapped in an outer region

• Can use “always” clause to
force it

• Or can use target update to
force it. When a host thread
encounters a target update
construct, it checks if the
variables are present in the
device data environment, and
makes the consistent
according to the to/from
clause

DATA MAPPING: IMPORTANT CONSTRUCTS
§ Declare target

– Allows global variables to be mapped to an
accelerator’s device data environment for the whole
execution of the program (“globally mapped”).

39

#pragma omp declare target
declarations-defs-seq

#pragma omp end declare target

#pragma omp declare target
float p[N], v1[N], v2[N];
#pragma omp end declare target

void vec_mult()
{

int i;
init(v1, v2, N);
#pragma omp target update to(v1, v2)

#pragma omp target
#pragma omp parallel for
for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];

#pragma omp target update from(p)

output(p, N);
}

DECLARE TARGET: GLOBAL VARIABLES TO
DEVICE FOR PROGRAM LIFETIME

40

For variables, it allows global
variables to be mapped to an
accelerator’s device data
environment for the whole
execution of the program
(“globally mapped”)

Globally mapped variables
created in accelerator’s device
data environment at the start of
the program, and have an infinite
reference count (means that they
are never copied to/from
implicitly)

Target update is used to keep
the variables consistent

Example

41

class myArray {
public:
int length;
double *ptr;
void allocate(int l) {
double *p = new double[l];
ptr = p;
length = l;

#pragma omp target enter data \
map(alloc:p[0:length])

}

void release() {
double *p = ptr;

#pragma omp target exit data \
map(release:p[0:length])

delete[] p;
ptr = 0;
length = 0;

}
};

Target enter/exit data

• target enter data construct executes a
map-enter phase for the pointer-based
array section p[0:length]. alloc allocates
memory for the array section on the
accelerator

• target exit data construct executes a
map-exit phase for the pointer-based
array section p[0:length]. Release frees
the corresponding storage in the device
data environment

SUMMARY OF DATA MAPPING CONSTRUCTS
AND SCOPES
§ Map clause on a target construct

– Map variables for a single target region
– Enclosed region executes on device and maps data

§ Target data
– Map variables across multiple target regions in a

structured block
– Enclosed region does not execute on device, only

maps data
§ Declare target

– Allows global variables to be mapped to an
accelerator’s device data environment for the whole
execution of the program (“globally mapped”).

§ Target enter/exit
– Map variables in stand-alone clauses

42

Mapping is linked to the
structured block inside the target
data or target region

Maps a variable for the extent of
the program, user-managed

Unstructured mapping, user-
managed

SUMMARY: DECREASING DATA TRANSFER

§ Use map clause to specify when an array/variable needs to be copied back and
forth, instead of using default implicit tofrom clause

§ Use target data regions around structured blocks to avoid mapping variables
unnecessarily

§ Use target enter/exit data and target declare data to manage data transfer more
explicitly

43

4. RUNTIME ROUTINES (AND NVPROF)

45

Helpful for understanding where execution is occurring
§ Set default device

– void omp_set_default_device(int num);
§ Get default deviice

– int omp_get_default_device();
§ Get number of target devices

– int omp_get_num_devices();
§ Find out if we’re on the host

– int omp_is_initial_device();
§ Find out who the host is

– int omp_get_initial_device();
§ Get information about the teams

– int omp_get_num_teams();
– int omp_get_team_num();

RUNTIME ROUTINES

• OpenMP support multiple accelerators
• Devices each have a unique device

number, although the number is
implementation-defined

• device and if clauses determine the
device

• If not specified, default-device-
var ICV is used (set to
OMP_DEFAULT_DEVICE if set,
otherwise it’s implementation-
defined)

ENVIRONMENT VARIABLES

§ OMP_DEFAULT_DEVICE
– set default device, when “device(num)” clause is not specified

§ OMP_TARGET_OFFLOAD={"MANDATORY" | "DISABLED" | "DEFAULT" }
– Controls whether region runs on device or host (OpenMP 5.0)

Helpful for understanding where execution is occurring

46

NVPROF: PROFILING TOOL FROM CUDA
TOOLKIT

§ Simple profiling: nvprof ./a.out

47

$ nvprof ./a.out
==89709== NVPROF is profiling process 89709, command: ./a.out
==89709== Profiling application: ./06_array_section
==89709== Profiling result:
Time(%) Time Calls Avg Min Max Name
99.97% 61.4535s 128 480.11ms 479.95ms 480.15ms __omp_offloading_2d_a3d062f_main_l14
0.03% 18.550ms 129 143.79us 2.3680us 150.37us [CUDA memcpy DtoH]
0.00% 1.3120us 1 1.3120us 1.3120us 1.3120us [CUDA memcpy HtoD]

Timing for OpenMP
target region

Timing for data
transfer

NVPROF: PROFILING TOOL FROM CUDA
TOOLKIT

§ Simple trace profiling: nvprof --print-gpu-trace ./a.out

48

$ nvprof --print-gpu-trace ./a.out
==98180== NVPROF is profiling process 98180, command: ./a.out
Success!
==98180== Profiling application: ./06_map
==98180== Profiling result:

Start Duration Grid Size Block Size Regs* Size Name
374.62ms 2.3360us - - - 1B [CUDA memcpy DtoH]
374.69ms 1.3120us - - - 4B [CUDA memcpy HtoD]
374.98ms 2.6880us - - - 4.0KB [CUDA memcpy HtoD]
375.00ms 2.2080us - - - 4.0KB [CUDA memcpy HtoD]
375.07ms 3.4284ms (1 1 1) (128 1 1) 21 0B __omp_offloading_2d_c1d8417
378.58ms 6.7840us - - - 4.0KB [CUDA memcpy DtoH]
378.66ms 6.7840us - - - 4.0KB [CUDA memcpy DtoH]

SUMMARY: CHECKING PROGRAM EXECUTION

§ Use OpenMP runtime routines to check if you’re running on the device, the
number of threads/teams on the device

§ Use nvprof to check the number of data transfers and where time is going

49

REFERENCES AND ACKNOWLEDGEMENTS

1. Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT
Press, 2017

2. OpenMP 4.5 Specification and Examples documents

3. “OpenMP 4.5: Relevant Accelerator Features” https://www.olcf.ornl.gov/wp-
content/uploads/2018/02/SummitDev_OpenMP4.5-tutorial-jan17.pdf

4. “Advanced OpenMP Tutorial” https://openmpcon.org/wp-
content/uploads/openmpcon2017/Tutorial2-Advanced_OpenMP.pdf

5. “Targeting GPUs with OpenMP4.5 Device Directives” http://on-
demand.gputechconf.com/gtc/2016/presentation/s6510-jeff-larkin-targeting-
gpus-openmp.pdf

Material from the following were used in this presentation:

50

OVERVIEW

§ Introduction and some terminology
– Execution model and data environment

§ Important OpenMP 4.5 Constructs/Concepts
– Device execution control
– Workshare
– Data mapping
– Runtime routines

§ Demo on JLSE at ALCF

51

DEMO

DEMO ON JLSE AT ALCF

1. Log into JLSE
– ssh user@login.jlse.anl.gov

2. Get the examples
– git clone https://github.com/colleeneb/simple_offload_examples.git

*Examples can be run at other locations, too

53

mailto:user@login.jlse.alcf.anl.gov
https://github.com/colleeneb/simple_offload_examples.git

DEMO ON JLSE AT ALCF

3. Submit an interactive job, cd into the right directory, and set the environment

*Examples can be run at other locations, too

54

$ qsub -q gpu_v100_smx2 -n 1 -t 60 -I

$ cd location_of_cloned_git_repo/simple_offload_examples

$ source build_files/jlse/environment_setup.sh # sets paths

DEMO ON JLSE AT ALCF

4. Build the examples

*Examples can be run at other locations, too

55

$ make -f build_files/jlse/Makefile.jlse
clang++ -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda 01_target_construct.cpp -o
01_target_construct
clang++ -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda 02_target_teams.cpp -o
02_target_teams
clang++ -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda 03_target_teams_parallel.cpp
-o 03_target_teams_parallel
clang++ -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda 04_map.cpp -o 04_map
clang++ -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda 05_map_type.cpp -o
05_map_type

DEMO ON JLSE AT ALCF
1. “Hello world from the accelerator”

– ./01_target_construct

2. Look at how many teams are generated with just target teams clause:

– ./02_target_teams

– This should print out a message from every thread in a team

3. Look at what happens when the parallel construct is added after target teams:

– ./03_target_teams_parallel

4. Look at the number of data transfers printed out with nvprof when implicit mapping is

used:

– nvprof --print-gpu-trace ./04_map

5. Look at the number of data transfers printed out with nvprof when explicit mapping is

used:

– nvprof --print-gpu-trace ./05_map_type

*Examples can be run at other locations, too

56

BACKUP

57

MANAGING MEMORY WITH API ROUTINES

§ Allocates space on the device, get a device pointer
– void* omp_target_alloc(size_t size, int device_num)

§ Free space on the device using a device pointer
– void omp_target_free(void* device_ptr, int device_num);

§ Copy memory back and forth
– int omp_target_memcpy(void* dst, void* src, size_t length, size_t dst_offset, size_t

src_offset, int dst_device_num, int src_device_num);

58

